Writing in Two Languages: Neural Machine Translation as an Assistive Bilingual Writing Tool

Jitao Xu

NetEase Youdao

Self-Introduction

Jitao Xu

I will join NetEase Youdao and Tsinghua University as a postdoctoral researcher.

PhD:

- Paris-Saclay University
- CNRS
- LISN (ex-LIMSI) \& SYSTRAN
- Advisor: François Yvon

SYSTRAN
beyond language

Writing in Two Languages: Neural Machine Translation as an Assistive Bilingual Writing Tool

Jitao Xu

NetEase Youdao

Table of Contents

(1) Introduction
(2) Dual Decoding
(3) Bilingual Synchronization

4 Conclusion

An Increasingly Global World

Using a foreign language in...

- Scientific activities

Bilingual Synchronization: Restoring Translational Relationships with Editing Operations Jitao Xu, osep Crego and Francois Yvon
niversite Paris-Saclay, CNRS, LISN \& SYSTRAN

- International business

Request of booking confirmation letter for ACL2022

ACL 2022 acl2022@abbey.ie
To: © XU Jitao
(1.) Letter of support for visa app...

Dear Jitao Xu,
Many thanks for your email and for sending us your details.
Please find attached your visa letter filled with all needed information Should you need any further assistance, please kindly let us know. Kind regards,

Ms Solene Clement
Association for Computacional Linguistics
ACL 2022 Secretariat
E: acl2022@abbey,ie ; w: https://www.2022.aclweb.org
ACL 2022

- Foreign videos

Jitao Xu (LISN)

Writing in a Foreign Language (L2)

- NOT easy!
- Fully relying on NMT systems is not yet realistic
- May contain errors
- Difficult to control
- Find help from external resources (dictionaries, terminologies, bilingual concordancers, etc.)
- Interrupt the writing process

Q Linguee Dictionary, 2022

External sources (not reviewed)

(...) proper food or rest, and after the classes they return home so late and [..] nourriture ou le repos nécessaires, et ils rentrent sitard chez eux apres ured that they are denied the free time needed to explore their own personal interests. Ei unescoco.unesco.arg
I cannot say that I am pleased today, because l am tired of addressing this Or, je ne peux dire aujourd'hui que c'est le cas, puisque je commence à topic in the House time and time again.
E) www2.parl.gc.ca

I am proud to be a public servant who has been part of this intiative, and I
am prepared to return to my home organization with a better appreciation [..] initiative en tant que fonctionnaire et je suis préte à réintégrer mon
of both sectors.
Families who have recently been displaced will not delay their return home Les familes récemment déplacées ne sont pas tentées de différer leur E- ineestle,arg court terme.

L2 Writing Assistance

System of Chen et al. (2012)

Type to translate
$\underline{1}$ rentre à la maison because I am tired.

English

I return home because I am tired.

- Bilingual composition
- Does not interrupt writing
- L2 segments help to translate L1 segments (in native language)
- Better than direct translation

L2 Writing Assistance

System of Chen et al. (2012)

Type to translate
I rentre à la maison because I am tired.

English

I return home because |
am tired.

- Bilingual composition
- Does not interrupt writing
- L2 segments help to translate L1 segments (in native language)
- Better than direct translation
- Only show full text in L2
- Hard to evaluate

Bilingual Writing

- Bilingual composition
- Full texts in both L1 and L2
- Help verify L2 with corresponding L1 texts

Bilingual Writing

[site-belvedere] chauffage

- Bilingual composition
- Full texts in both L1 and L2
- Help verify L2 with corresponding L1 texts
- Compose one sentence, obtain synchronized bitext
site-belvedere-request@lisn.upsaclay.fr
To: site-belvedere@lisn.fr
Bonjour à tous et tous,
Le chauffage est en fonctionnement.
Dear all,
The heating is on.

Bilingual Writing

Type to translate	English
I rentre à la maison because I am tired.	I return home because I am tired.

- Bilingual composition
- Full texts in L1 and L2 X

Type to translate French English

```
Je rentre à la maison
parce que je suis fatigué.
```


- Bilingual composition X
- Full texts in L1 and L2 $\sqrt{ }$

Related Work

In addition to this，there are more than 18 tailing heaps \｛a4\}located right in the city $\{/ a 4\}$ ，which has caused serious health impacts＂：

CAT system．Knowles and Koehn（2016）

（b）

Translation

```
We sp their opinion.
```

1 specialists 2 specific 3 split We asked two experts for their opinion．
（a）

Source Sentence
 Wir haben die Meinung von zwei Fachärzten eingeholt．

Auto－completion．Li et al．（2021）

Source Sentence	他们也许并不知道这是一个＂假理财＂骗局，但也察觉到了诸多 可疑之处，然而最终还是按照张颖的指使进行了违法违规操作。
Translation	They may not know this is a＂fake financial management＂scam，but also aware of many suspicious，and ultimately conduct illegal operations according to Zhang Ying＇s instructions．
Suggestions	1．suspects（s）2．doubtful points（d p） 3．questionable points（q p）

Translation suggestion．Yang et al．（2022）

Bilingual Writing Systems

Our proposal No.1: Dual Decoding

English

I return home because I am tired.

French

Je rentre à la maison parce que je suis fatigué.

- Mixed-language (MXL) composition
- Display L1 and L2 in two boxes

Bilingual composition \checkmark
Full texts in L1 and L2 \checkmark

Bilingual Writing Systems

Our proposal No.2: Bilingual Synchronization

- One language per box
- Both boxes allow composing
- Display synchronized L1 and L2

> Bilingual composition \checkmark
> Full texts in L1 and L2 \checkmark

Bilingual Writing Systems

- Focused on developing new techniques for both proposed approaches
- Evaluated in simulated interactive situations

Research Questions:

- How to deal with MXL data? Do we need to annotate words from different languages?
- Is it possible to simultaneously generate two targets in one model?
- How to efficiently synchronize bitext?

Table of Contents

(1) Introduction

(2) Dual Decoding

(3) Bilingual Synchronization

4 Conclusion

Dual Decoding

English

- Taking MXL sentence as input
- Simultaneously generating consistent translations in L1 and L2

Missing MXL Data

- Require triplets $\left(\mathbf{f}, \mathbf{e}^{1}, \mathbf{e}^{2}\right)$ for dual decoding
- $\mathbf{f}=\mathrm{MXL}$ sentence
- $\mathbf{e}^{1}=\mathrm{L} 1$ sentence
- $\mathrm{e}^{2}=\mathrm{L} 2$ sentence
- Only have parallel data e^{1} and e^{2}

Missing MXL Data

- Require triplets ($\mathbf{f}, \mathbf{e}^{1}, \mathbf{e}^{2}$) for dual decoding
- $\mathbf{f}=M X L$ sentence
- $\mathbf{e}^{1}=\mathrm{L} 1$ sentence
- $\mathrm{e}^{2}=\mathrm{L} 2$ sentence
- Only have parallel data e^{1} and e^{2}
- Generate synthetic MXL data f from e^{1} and e^{2}
- Main language: preserving the sentence structure
- Secondary language: inserted segments
- Replace main segments with secondary ones

MXL Data Generation

Alignment units

In Oregon, planners are experimenting with giving drivers different choices .
Dans I'Orégon, les planificateurs tentent l'expérience en offrant aux automobilistes différents choix.

- Select the main language and number of replacements r according to:

$$
P(r=k)=\frac{1}{2^{k+1}} \quad \forall k=1, \ldots, R
$$

- Make sure r smaller than half of either side's length

$$
r=\min \left(\frac{|S|}{2}, \frac{|T|}{2}, r\right)
$$

- Randomly replace r main units with secondary ones

MXL Data Generation

Generated MXL sentences

Main	In Oregon, planners are experimenting with giving drivers different choices .
$r=1$	Dans Oregon , planners are experimenting with giving drivers different choices.
$r=3$	Dans Oregon, les planificateurs are experimenting with giving drivers different choices . Dans Oregon , les planificateurs are experimenting en offrant aux drivers different choices .
Secondary	Dans l'Orégon, les planificateurs tentent l'expérience en offrant aux au- tomobilistes différents choix .

Model Architecture

- MXL data \checkmark
- How to simultaneously generate consistent L1 and L2?

Model Architecture

- MXL data \checkmark
- How to simultaneously generate consistent L1 and L2?

Dual Decoder Model

Dual Decoder Model

Simultaneously translating a source f into two targets e^{1} and e^{2} :

$$
\begin{aligned}
& P\left(\mathbf{e}^{1}, \mathbf{e}^{2} \mid \mathbf{f}\right)=\prod_{t=1}^{T} P\left(\mathbf{e}_{t}^{1}, \mathbf{e}_{t}^{2} \mid \mathbf{f}, \mathbf{e}_{<t}^{1}, \mathbf{e}_{<t}^{2}\right) \\
& P\left(\mathbf{e}^{1}, \mathbf{e}^{2} \mid \mathbf{f}\right)=\prod_{t=1}^{T} P\left(\mathbf{e}_{t}^{1} \mid \mathbf{f}, \mathbf{e}_{<t}^{1}, \mathbf{e}_{<t}^{2}\right) \times P\left(\mathbf{e}_{t}^{2} \mid \mathbf{f}, \mathbf{e}_{<t}^{1}, \mathbf{e}_{<t}^{2}\right) \\
& P\left(\mathbf{e}^{1}, \mathbf{e}^{2} \mid \mathbf{f}\right)=\prod_{t=1}^{T} P\left(\mathbf{e}_{t}^{1} \mid \mathbf{f}, \mathbf{e}_{<t}^{1}\right) P\left(\mathbf{e}_{t}^{2} \mid \mathbf{f}, \mathbf{e}_{<t}^{2}\right)
\end{aligned}
$$

- One shared encoder, two synchronized decoders
- Synchronous decoding (\mathbf{e}_{t}^{1} and \mathbf{e}_{t}^{2}) is performed simultaneously at each step

Dual Decoder Model

Hidden states of layer l as H_{l}^{1} and H_{l}^{2} :

$$
\begin{aligned}
H_{l+1}^{1} & =\operatorname{Attention}\left(H_{l}^{1}, H_{l}^{2}, H_{l}^{2}\right) \\
H_{l+1}^{2} & =\operatorname{Attention}\left(H_{l}^{2}, H_{l}^{1}, H_{l}^{1}\right)
\end{aligned}
$$

Dual Decoder Model

Hidden states of layer l as H_{l}^{1} and H_{l}^{2} :

$$
\begin{aligned}
& H_{l+1}^{1}=\operatorname{Attention}\left(H_{l}^{1}, H_{l}^{2}, H_{l}^{2}\right) \\
& H_{l+1}^{2}=\operatorname{Attention}\left(H_{l}^{2}, H_{l}^{1}, H_{l}^{1}\right)
\end{aligned}
$$

Training and with a combined loss:

$$
\begin{aligned}
L(\theta)= & \sum_{D}\left(\sum_{t=1}^{\left|\mathbf{e}^{1}\right|} \log P\left(\mathbf{e}_{t}^{1} \mid \mathbf{e}_{<t}^{1}, \mathbf{e}_{<t}^{2}, \mathbf{f}, \theta\right)\right. \\
& \left.+\sum_{t=1}^{\left|\mathbf{e}^{2}\right|} \log P\left(\mathbf{e}_{t}^{2} \mid \mathbf{e}_{<t}^{2}, \mathbf{e}_{<t}^{1}, \mathbf{f}, \theta\right)\right)
\end{aligned}
$$

Decoding with Decoder Cross Attention

Dual beam search:

- Each candidate only attends to one candidate from the other decoder

Experimental Settings

- Data:

Training: WMT14 En-Fr \& WMT13 En-Es
Test: newstest2014 for En-Fr, newstest2013 for En-Es
Generate synthetic MXL newstest2014 and newstest2013

- Models:
- dual: Our dual decoder model
- 3 MXL baselines:
base: Two separate Transformers e.g. MXL-En + MXL-Fr multi: One multilingual model for e.g. MXL-En \& MXL-Fr indep: One encoder, two independent decoders with a joint loss
- 2 monolingual baselines:
base-mono: e.g. En-Fr $+\mathrm{Fr}-\mathrm{En}$
bilingual: e.g. En-Fr \& Fr-En

Results

- dual comparable to bilingual on monolingual sentence
- dual similar to base on MXL

BLEU	newstest2014		mxl-newstest2014	
Direction	En-Fr	Fr-En	MXL-Fr	MXL-En
copy	-	-	50.0	46.5
base-mono	37.6	35.2	45.0	61.3
bilingual	$\mathbf{3 6 . 1}$	$\mathbf{3 4 . 0}$	46.3	59.4
base	36.5	34.1	$\mathbf{6 7 . 4}$	$\mathbf{6 7 . 8}$
multi	34.6	32.3	66.4	65.7
indep	35.9	34.0	67.3	67.7
dual	36.0	33.9	$\mathbf{6 7 . 5}$	$\mathbf{6 7 . 7}$

Results

- dual comparable to bilingual on monolingual sentence
- dual similar to base on MXL
- dual better than multi

BLEU	newstest2014		mxl-newstest2014	
Direction	En-Fr	Fr-En	MXL-Fr	MXL-En
copy	-	-	50.0	46.5
base-mono	37.6	35.2	45.0	61.3
bilingual	36.1	34.0	46.3	59.4
base	36.5	34.1	67.4	67.8
multi	34.6	32.3	66.4	65.7
indep	35.9	34.0	67.3	67.7
dual	36.0	33.9	67.5	67.7

Copy Constraint

- User-composed texts should be preserved in the two translations
- All words in MXL should appear in at least one output

Copy Constraint

Copy Constraint

	En-Fr			
Model	Exclusive	Punc	Both	Lost
reference	81.56	10.34	8.10	0.00
base	$\mathbf{7 9 . 1 4}$	11.29	$\mathbf{8 . 8 5}$	0.72
multi	78.66	11.27	9.22	0.85
indep	78.86	11.35	9.13	0.67
dual	$\mathbf{7 8 . 9 0}$	11.32	$\mathbf{9 . 1 7}$	$\mathbf{0 . 6 1}$

- Distinguish one language from another
- Different translation choices
- dual has fewer lost tokens

L2 Writing Assistant Task (SemEval 2014)

Example (L1=French, L2=English)

Input: "I rentre à la maison because / am tired."
Reference: "I return home because I am tired."

- Translating L1 fragments in L2 contexts
- A more realistic task
- Direct zero-shot inference on this task

L2 Writing Assistant Task

Fr-En	Accuracy	Word Accuracy	Recall
UEdin-run1	0.733	0.824	1.0
UEdin-run2	0.731	0.821	1.0
UEdin-run3	0.723	0.816	1.0
CNRC-run1	0.556	0.694	1.0
dual	0.602	0.723	0.998

En-Es	Accuracy	Word Accuracy	Recall
UEdin-run2	0.755	0.827	1.0
UEdin-run1	0.753	0.827	1.0
UEdin-run3	0.745	0.820	1.0
dual	$\mathbf{0 . 7 8 7}$	$\mathbf{0 . 8 5 4}$	1.0

- Zero-shot inference
- 4th place for Fr-En
- State-of-the-art for En-Es

More Applications with Dual Decoder Model

Source I could do that again if you want.
L2R Je peux le refaire si vous le voulez
R2L . voulez le vous si refaire le peux Je
Bidirectional decoding
polite Ich kann das noch mal machen, wenn Sie wollen .
informal Ich kann das noch mal machen, wenn du willst.

Multi-style Decoding

| Transcript | i 'm combining specific types of signals the mimic how our body
 response to in an injury to help us regenerate | |
| :--- | :--- | :--- | :--- |
| Caption | l'm combining specific types of signals [eob] that mimic how
 our body responds to injury [eol] to help us regenerate. [eob] | Multilingual |
| Subtitle | Je combine différents types de signaux [eob] qui imitent la
 réponse du corps [eol] aux blessures pour nous aider à guérir.
 [eob] | subtitling |

- Applied to other tasks. Mitigated exposure bias problem. Obtained similar or better performance with higher consistency between outputs.

Summary of Dual Decoding

- Simultaneously translate MXL into L1 and L2
- Generate synthetic MXL data
- Proposed dual decoder model, simultaneously generating pairs of consistent translations
- Very few lost tokens
- Implicit language identification ability
- Zero-shot inference on realistic L2 writing assistant task

Table of Contents

(1) Introduction

(2) Dual Decoding
(3) Bilingual Synchronization
(4) Conclusion

Bilingual Synchronization

- Allow composing on both sides
- Keep texts in L1 and L2 synchronized
- Make small changes through revision

Bilingual Synchronization (Bi-sync)

Given:

- f: a source
- ẽ: an initial target, small differences to e

Find \mathbf{e} : translation of f , by editing \tilde{e}

A General Task

Bi-sync encompasses several MT tasks:

Bilingual writing:
Translation Memory based MT:
Parallel corpus fixing:
Automatic post-editing:
MT:
$\tilde{\mathbf{e}}=$ translation of a previous version of \mathbf{f}
(TM) $\tilde{\mathbf{e}}=$ similar translation of f found in TM
$\tilde{\mathbf{e}}=$ noisy translation needs to be fixed
$\tilde{\mathbf{e}}=$ MT output to edit
$\tilde{\mathbf{e}}=[]$

A General Task

Bi-sync encompasses several MT tasks:

Bilingual writing:
Translation Memory based MT:
Parallel corpus fixing:
Automatic post-editing:
MT:
$\tilde{\mathbf{e}}=$ translation of a previous version of \mathbf{f}
(TM) $\tilde{\mathbf{e}}=$ similar translation of f found in TM
$\tilde{\mathbf{e}}=$ noisy translation needs to be fixed
$\tilde{\mathbf{e}}=$ MT output to edit
$\tilde{\mathbf{e}}=[]$

Generating Training Editing Data

- Require triplets (f, é, e)
- Small edits between ẽ and e
- Only have parallel data f and e

Generating Training Editing Data

- Require triplets (f, é, e)
- Small edits between ẽ and e
- Only have parallel data f and e
- Decompose editions as basic types: Insertion, Substitution, Deletion
- Generate synthetic ẽ for each editing type

Insertion

- Randomly drop tokens from e
- Keep at least half of \mathbf{e}

Substitution

e Cela n' arrivera pas .

Top 5 Sampling

That will not happen
Constrained Decoding

- Round trip translation with constrained decoding
- Back translate $\mathbf{e} \rightarrow \mathbf{f}^{*}$ with top- 5 sampling
- $\mathbf{f}^{*} \rightarrow \tilde{\mathbf{e}}_{\text {sub }}$ with lexical constrained decoding
- Half of e as constraints, substitute the other half

Deletion

WikiAtomicEdits Model $\tilde{\mathbf{e}}_{\text {del }_{2}}$ Cela n' arrivera pas, mais seulement.

Copy and Translate

Copy

- Detect parallelism between \mathbf{f} and $\tilde{\mathbf{e}}$
- Do not change anything if already parallel
- $\tilde{\mathbf{e}}_{\mathrm{cp}}=\mathbf{e}$

Editing and translation

- Final ẽ: random combination of $\tilde{\mathbf{e}}_{\text {ins }}$, $\tilde{\mathbf{e}}_{\text {sub }}, \tilde{\mathbf{e}}_{\text {del }}$ and $\tilde{\mathbf{e}}_{\text {cp }}$
- Combine editing data (f, é, e) and translation data (f, e)
- Keep translation ability

Model Architecture

- Editing data \tilde{e}^{\checkmark}
- How to condition on ẽ?

Model Architecture

- Editing data ${ }^{\mathbf{e}} \checkmark$
- How to condition on ẽ?

Two approaches:
Autoregressive and non-autoregressive

- Non-autoregressive model is more efficient

Edit-MT

Tagging scheme:

- Autoregressive, similar to Bulte and Tezcan (2019)
- Prefix editing tags on target side

Insertion: [ins][!sub][!del]
Substitution: [!ins] [sub] [!del]
Deletion: [!ins][!sub][del]
Copy: [!ins][!sub][!del]

Edit-MT

Inference with tag:

- Direct inference: predict tag +e (Tags unknown)
- Prefix decoding: forced prefix tag + predict e (Tags known)

Edit-MT

Inference with tag:

- Direct inference: predict tag +e (Tags unknown)
- Prefix decoding: forced prefix tag + predict e (Tags known)

Autoregressive model does not really make edits to ẽ

Levenshtein Transformer (LevT)

Levenshtein Transformer (LevT)

- Non-autoregressive
- Perform edits to a sentence
- Iterative refinement decoding
- Always starts from empty
- Only delete prediction errors

Edit-LevT

- Non-autoregressive, based on LevT
- LevT only deletes prediction errors
- Need to remove unrelated tokens from ẽ
- Add an initial deletion
- $\mathbf{e}^{\prime}=\tilde{\mathbf{e}}$
- Does not change inference

Experimental Settings

- Data:

Training: WMT14 En-Fr
Test: newstest2014
Generate synthetic ẽ for newstest2014

- Models:
- Edit-MT: Our autoregressive model
- Edit-LevT: Our non-autoregressive model
- 2 baseline settings:
copy: use ẽ as output
vanilla LevT: No initial deletion

Results for Basic Edits

Baseline translation 36.4 BLEU Avg. Edit-MT-1.2 BLEU. Edit-LevT-7.7 BLEU

En-Fr	Ins	Sub	Del_{1}	Del_{2}
copy	54.0	71.5	71.0	78.7
Edit-MT	$\mathbf{7 5 . 9}$	$\mathbf{7 7 . 0}$	$\mathbf{8 6 . 9}$	$\mathbf{9 4 . 7}$
$\quad+$ tag	76.9	78.5	88.6	94.7
LevT	65.3	73.9	72.5	78.7
Edit-LevT	$\mathbf{7 2 . 6}$	$\mathbf{7 6 . 3}$	$\mathbf{8 1 . 9}$	$\mathbf{9 2 . 2}$

Fr-En	Ins	Sub	Del_{1}	Del_{2}
copy	51.8	70.9	71.0	78.7
Edit-MT	$\mathbf{7 3 . 6}$	$\mathbf{7 4 . 6}$	$\mathbf{8 7 . 5}$	$\mathbf{9 5 . 8}$
\quad + tag	74.6	76.2	89.1	96.2
LevT	66.5	72.4	72.3	78.4
Edit-LevT	$\mathbf{7 0 . 7}$	$\mathbf{7 4 . 1}$	$\mathbf{8 2 . 8}$	$\mathbf{9 2 . 7}$

- Edit-MT and Edit-LevT performs all types of edit

Results for Basic Edits

Baseline translation 36.4 BLEU Avg. Edit-MT-1.2 BLEU. Edit-LevT-7.7 BLEU

En-Fr	Ins	Sub	Del_{1}	Del_{2}
copy	54.0	71.5	71.0	78.7
Edit-MT	75.9	77.0	86.9	94.7
$\quad+$ tag	$\mathbf{7 6 . 9}$	$\mathbf{7 8 . 5}$	$\mathbf{8 8 . 6}$	$\mathbf{9 4 . 7}$
LevT	65.3	73.9	72.5	78.7
Edit-LevT	72.6	76.3	81.9	92.2

Fr-En	Ins	Sub	Del_{1}	Del_{2}
copy	51.8	70.9	71.0	78.7
Edit-MT	73.6	74.6	87.5	95.8
\quad + tag	$\mathbf{7 4 . 6}$	$\mathbf{7 6 . 2}$	$\mathbf{8 9 . 1}$	$\mathbf{9 6 . 2}$
LevT	66.5	72.4	72.3	78.4
Edit-LevT	70.7	74.1	82.8	92.7

- Edit-MT and Edit-LevT performs all types of edit
- Edit-MT + tag works best

Results for Basic Edits

Baseline translation 36.4 BLEU Avg. Edit-MT-1.2 BLEU. Edit-LevT-7.7 BLEU

En-Fr	Ins	Sub	Del_{1}	Del_{2}
copy	54.0	71.5	71.0	78.7
Edit-MT	$\mathbf{7 5 . 9}$	$\mathbf{7 7 . 0}$	$\mathbf{8 6 . 9}$	$\mathbf{9 4 . 7}$
$\quad+$ tag	76.9	78.5	88.6	94.7
LevT	65.3	73.9	72.5	78.7
Edit-LevT	$\mathbf{7 2 . 6}$	$\mathbf{7 6 . 3}$	$\mathbf{8 1 . 9}$	$\mathbf{9 2 . 2}$

Fr-En	Ins	Sub	Del_{1}	Del_{2}
copy	51.8	70.9	71.0	78.7
Edit-MT	$\mathbf{7 3 . 6}$	$\mathbf{7 4 . 6}$	$\mathbf{8 7 . 5}$	$\mathbf{9 5 . 8}$
\quad + tag	74.6	76.2	89.1	96.2
LevT	66.5	72.4	72.3	78.4
Edit-LevT	$\mathbf{7 0 . 7}$	$\mathbf{7 4 . 1}$	$\mathbf{8 2 . 8}$	$\mathbf{9 2 . 7}$

- Edit-MT and Edit-LevT performs all types of edit
- Edit-MT + tag works best
- Edit-LevT close to Edit-MT, depends on operation type
- Edit-LevT $3 \times$ faster than Edit-MT

Multilingual Results

En-Fr	Ins	Sub	Del_{1}	Del_{2}
copy	54.0	71.5	71.0	78.7
Edit-MT	75.9	77.0	86.9	94.7
\quad + tag	76.9	78.5	88.6	94.7
multi Edit-MT	$\mathbf{7 5 . 5}$	$\mathbf{7 7 . 2}$	$\mathbf{8 6 . 9}$	$\mathbf{9 4 . 7}$
\quad + tag	$\mathbf{7 6 . 2}$	$\mathbf{7 8 . 1}$	$\mathbf{8 8 . 5}$	$\mathbf{9 4 . 9}$
Edit-LevT	72.6	76.3	81.9	92.2
multi Edit-LevT	$\mathbf{7 2 . 4}$	$\mathbf{7 6 . 3}$	$\mathbf{8 3 . 0}$	$\mathbf{9 2 . 4}$

- Combine data in both directions
- No performance loss for multilingual models
- Do not distinguish a target language
- real BILINGUAL synchronization

More Applications with Bi-sync Models

Bi-sync encompasses several MT tasks:

Bilingual writing: Translation Memory based MT:
Parallel corpus fixing:
Automatic post-editing: MT:
$\tilde{\mathbf{e}}=$ translation of a previous version of \mathbf{f}
(TM) $\tilde{\mathbf{e}}=$ similar translation of f found in TM $\tilde{\mathbf{e}}=$ noisy translation needs to be fixed $\tilde{\mathbf{e}}=$ MT output to edit

$$
\tilde{\mathbf{e}}=[]
$$

- Fine-tuning on downstream tasks
- Similar or even better performance than dedicated systems

More Applications with Bi-sync Models

Bi-sync encompasses several MT tasks:

Bilingual writing: Translation Memory based MT:
Parallel corpus fixing:
Automatic post-editing: MT:
$\tilde{\mathbf{e}}=$ translation of a previous version of \mathbf{f}
(TM) $\tilde{\mathbf{e}}=$ similar translation of f found in TM
$\tilde{\mathbf{e}}=$ noisy translation needs to be fixed
$\tilde{\mathbf{e}}=$ MT output to edit
$\tilde{\mathbf{e}}=[]$

- Fine-tuning on downstream tasks
- Similar or even better performance than dedicated systems
- Find a similar translation of \mathbf{f} from TM
- Make use of similar translation
- Multiple edit operations in one sentence

Experimental Settings:

- Multi-domain (11) data for En-Fr
- Unseen domains: OpenOffice and ENV
- Zero-shot inference \& fine-tuning

Results for TM-based MT

BLEU	All 11	Office	ENV
copy	52.6	54.7	59.6
Bulte and Tezcan	$\mathbf{6 7 . 3}$	$\mathbf{6 6 . 8}$	$\mathbf{7 5 . 4}$
(2019)			
Edit-MT+ tag $\quad+$ FT + tag	52.6	56.2	60.3
Edit-LevT	51.4	$\mathbf{6 8 . 6}$	$\mathbf{7 8 . 6}$
$\quad+$ FT	$\mathbf{6 1 . 5}$	$\mathbf{6 2 . 2}$	$\mathbf{7 5 . 1}$

- Zero-shot inference does not work
- Fine-tuning works well
- Edit-MT + FT similar to Bulte and Tezcan (2019)
- Edit-LevT benefits from fine-tuning

Summary of Bilingual Synchronization

- Define Bi-sync task
- Generate editing data for each type
- Propose autoregressive and non-autoregressive models to perform Bi -sync
- Good performance for each editing type
- Experiment with multilingual approach
- Applicable to downstream tasks like TM-based MT

Table of Contents

(1) Introduction

(2) Dual Decoding
(3) Bilingual Synchronization
(4) Conclusion

Conclusion

- Targeting bilingual writing
- Two approaches: Dual Decoding and Bilingual Synchronization

Conclusion

- Targeting bilingual writing
- Two approaches: Dual Decoding and Bilingual Synchronization

Dual decoding:

- Simultaneously generate L1 and L2 from MXL
- Generated synthetic MXL
- Proposed dual decoder model

Bilingual synchronization:

- Obtain translation of source by editing an initial target
- Generated editing data
- Proposed autoregressive and non-autoregressive approach

Conclusion

- Targeting bilingual writing
- Two approaches: Dual Decoding and Bilingual Synchronization

Dual decoding:

- Simultaneously generate L1 and L2 from MXL
- Generated synthetic MXL
- Proposed dual decoder model

Bilingual synchronization:

- Obtain translation of source by editing an initial target
- Generated editing data
- Proposed autoregressive and non-autoregressive approach
- Both are general framework
- Applicable to other tasks with good performance

Future Perspectives

- Interface design and development
- Conduct user studies
- Evaluate the efficiency of bilingual writing tools in real scenarios
- Compare dual decoding with bilingual synchronization

GECor Bisync Named entity recognition NLLB (by Meta All OPT (by Meta Al) Punctuator

Thank you!

References

Bram Bulte and Arda Tezcan. 2019. Neural fuzzy repair: Integrating fuzzy matches into neural machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 1800-1809, Florence, Italy. Association for Computational Linguistics.
Mei-Hua Chen, Shih-Ting Huang, Hung-Ting Hsieh, Ting-Hui Kao, and Jason S. Chang. 2012. FLOW: A first-language-oriented writing assistant system. In Proceedings of the ACL 2012 System Demonstrations, pages 157-162, Jeju Island, Korea. Association for Computational Linguistics.
Rebecca Knowles and Philipp Koehn. 2016. Neural interactive translation prediction. In Conferences of the Association for Machine Translation in the Americas: MT Researchers' Track, pages 107-120, Austin, TX, USA. The Association for Machine Translation in the Americas.
Huayang Li, Lemao Liu, Guoping Huang, and Shuming Shi. 2021. GWLAN: General word-level AutocompletioN for computer-aided translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4792-4802, Online. Association for Computational Linguistics.
Yanling Xiao, Lemao Liu, Guoping Huang, Qu Cui, Shujian Huang, Shuming Shi, and Jiajun Chen. 2022. BiTIIMT: A bilingual text-infilling method for interactive machine translation. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1958-1969, Dublin, Ireland. Association for Computational Linguistics.

Zhen Yang, Fandong Meng, Yingxue Zhang, Ernan Li, and Jie Zhou. 2022. WeTS: A benchmark for translation suggestion. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5278-5290, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.

Analysis of Different Edit Types

BLEU	$=$	I	S	D	$\mathrm{I}+\mathrm{S}$	$\mathrm{I}+\mathrm{D}$	$\mathrm{S}+\mathrm{D}$	$\mathrm{I}+\mathrm{S}+\mathrm{D}$	All
copy	100.0	72.0	67.9	75.4	32.5	69.8	34.0	47.3	52.6
Bulte and Tez- can (2019)	91.6	80.6	86.6	82.9	50.0	67.4	58.4	63.0	67.3
Edit-MT+ FT + tag	91.6	$\mathbf{7 9 . 7}$	$\mathbf{8 4 . 6}$	$\mathbf{8 5 . 8}$	$\mathbf{4 8 . 3}$	$\mathbf{6 9 . 9}$	$\mathbf{5 7 . 6}$	$\mathbf{6 0 . 8}$	66.0
Edit-LevT + FT	$\mathbf{9 4 . 1}$	$\mathbf{7 7 . 5}$	81.1	$\mathbf{8 1 . 4}$	$\mathbf{4 1 . 8}$	67.7	52.0	56.7	61.5

- Edit-MT + FT performs better on single edit type
- Edit-LevT + FT good at detecting parallelism

Further Study of TM-based NAT

Results

	sim >0.6		sim $\in[0.4,0.6]$	
BLEU	w/o TM	w/TM	w/o TM	w/TM
copy	-	52.6	-	34.5
Bulte and Tezcan (2019)	$\mathbf{5 1 . 2}$	$\mathbf{6 7 . 1}$	$\mathbf{4 6 . 1}$	55.7
LevT	46.5	60.4	40.8	49.3
$\quad \quad$ tgt TM	-	52.8	-	35.0
Edit-LevT	52.6	65.9	45.7	53.3

- Edit-LevT similar to autoregressive baseline with and without TM
- Training with TMs helps regular MT for Edit-LevT

Knowledge Distillation

	$\operatorname{sim}>0.6$		$\operatorname{sim} \in[0.4,0.6]$	
BLEU	w/o TM	w/ TM	w/o TM	w/ TM
copy	-	52.6	-	34.5
Teacher	56.7	-	49.6	-
Edit-LevT	$\mathbf{5 2 . 6}$	65.9	$\mathbf{4 5 . 7}$	53.3
\quad +KD	$\mathbf{5 4 . 3}$	57.1	$\mathbf{4 7 . 6}$	49.3
+KD TM	53.8	56.0	47.3	48.5

- KD helps regular translation

Knowledge Distillation

	sim >0.6		sim $\in[0.4,0.6]$	
BLEU	w/o TM	w/ TM	w/o TM	w/TM
copy	-	52.6	-	34.5
Teacher	56.7	-	49.6	-
Edit-LevT	52.6	$\mathbf{6 5 . 9}$	45.7	$\mathbf{5 3 . 3}$
\quad +KD	54.3	57.1	47.6	49.3
+KD TM	53.8	56.0	47.3	48.5

- KD helps regular translation
- KD does not help when using TMs

Knowledge Distillation

	sim >0.6		sim $\in[0.4,0.6]$	
BLEU	w/o TM	w/ TM	w/o TM	w/ TM
copy	-	52.6	-	34.5
Teacher	56.7	-	49.6	-
Edit-LevT	52.6	65.9	45.7	53.3
\quad +KD	54.3	57.1	47.6	49.3
+KD TM	53.8	56.0	47.3	48.5

- KD helps regular translation
- KD does not help when using TMs
- Performance with KD limited to teacher

Decoding with Decoder Cross Attention

Dual beam search:

- Each candidate only attends to one candidate from the other decoder

Decoding with Decoder Cross Attention

Dual beam search:

- Each candidate only attends to one candidate from the other decoder
- Computing overhead $(2 \times)$ since no more incremental decoding

The Effect of Mixing Languages

- Up to 20 replacements
- Embedded segments helps translation, especially the first few segments
- Basic grammar structure helps translation

Correcting Morphological Errors

Output of dual model

En	In Oregon , planners are experimenting with giving drivers different choices. Dans I' Orégon, les planificateurs tentent I' expérience en offrant aux automobilistes différents choix .
MXL	In I' Oregon, planners tentent I' expérience with giving automobilistes différents choix. En I' Oregon, les planificateurs tentent I' expérience de donner aux automobilistes différents choix.
Noisy MXL	In I' Oregon, planners tenter I' expérience with giving automobilist différent choix. Dans I' Oregon, les planificateurs peuvent tenter I' expérience de don- ner un choix différent aux automobilistes .

Multi-target Translation

- $\mathrm{De} \rightarrow \mathrm{En} / \mathrm{Fr}, \mathrm{En} \rightarrow \mathrm{De} / \mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{Zh} / \mathrm{Ja}$
- IWSLT17 as training data ($\sim 200 \mathrm{k}$), IWSLT TED tst2014 as test data
- Multilingual pre-training with WMT data

Model	$\mathrm{Avg}^{2} \mathrm{BLEU}$	$\mathrm{Avg}^{2} \mathrm{SIM}$
base	26.7	87.53
multi	$25.8(-0.9)$	$89.05(+1.52)$
indep	$\mathbf{2 7 . 6 (+ 0 . 9)}$	$88.28(+0.75)$
dual	$26.6(-0.1)$	$88.71(+1.18)$
indep ps	$\mathbf{2 7 . 4 (+ 0 . 7)}$	$88.69(+1.16)$
dual ps	$\mathbf{2 7 . 3 (+ 0 . 6)}$	$89.00(+1.47)$
indep FT	$30.3(+3.6)$	$89.54(+2.01)$
dual FT	$\mathbf{3 0 . 1}(+3.4)$	$89.66(+2.13)$

- dual worse than indep, possibly suffering from exposure bias problem
- Using synthetic pseudo tri-parallel data helps
- Fine-tuning using pre-trained multilingual models is beneficial

[^0]
Multi-target Translation

- $\mathrm{De} \rightarrow \mathrm{En} / \mathrm{Fr}, \mathrm{En} \rightarrow \mathrm{De} / \mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{Zh} / \mathrm{Ja}$
- IWSLT17 as training data ($\sim 200 \mathrm{k}$), IWSLT TED tst2014 as test data
- Multilingual pre-training with WMT data

Model	$\mathrm{Avg}^{2} \mathrm{BLEU}$	$\mathrm{Avg}^{2} \mathrm{SIM}$
base	26.7	87.53
multi	$25.8(-0.9)$	$89.05(+1.52)$
indep	$\mathbf{2 7 . 6 (+ 0 . 9)}$	$88.28(+0.75)$
dual	$26.6(-0.1)$	$\mathbf{8 8 . 7 1 (+ 1 . 1 8)}$
indep ps	$\mathbf{2 7 . 4 (+ 0 . 7)}$	$88.69(+1.16)$
dual ps	$\mathbf{2 7 . 3 (+ 0 . 6)}$	$\mathbf{8 9 . 0 0 (+ 1 . 4 7)}$
indep FT	$30.3(+3.6)$	$89.54(+2.01)$
dual FT	$30.1(+3.4)$	$\mathbf{8 9 . 6 6 (+ 2 . 1 3)}$

- dual worse than indep, possibly suffering from exposure bias problem
- Using synthetic pseudo tri-parallel data helps
- Fine-tuning using pre-trained multilingual models is beneficial
- Higher similarity between translations

[^1]
Bidirectional Decoding

- En \rightarrow De, Fr, Zh, Ja
- Same data as multi-target translation

Model	$\mathrm{Avg}^{3} \mathrm{BLEU}$	Avg^{3} Consistency
base	25.7	-
indep	$26.5(+0.8)$	52.4
dual	$21.8(-3.9)$	$83.5(+31.1)$
indep pseudo	$26.9(+1.2)$	62.4
dual pseudo	$\mathbf{2 6 . 5 (+ 0 . 8)}$	$80.3(+17.9)$

- Severe exposure bias problem for dual: low BLEU score but high consistency
- Mitigated using pseudo parallel data
- More consistent translations

[^2]
Multilingual Subtitling

pipeline

- MuST-Cinema En-Fr data
- ~ 275k for training, 544 for test
- WMT data (33.9M) for pre-training

Multilingual Subtitling

Model	BLEU			Consistency		
	EN	FR	Avg	Structural	Lexical	
base	55.7	23.9	39.8	55.3	70.7	
base +FT	55.7	24.9	40.3	54.5	71.4	
pipeline	55.7	23.6	39.7	95.7	96.0	
pipeline +FT	55.7	24.2	40.0	98.4	98.3	
dual + FT	56.9	25.6	41.3	65.1	79.1	
share +FT	56.5	25.8	41.2	66.7	80.0	

- Pipeline worse in quality, higher in consistency

Multilingual Subtitling

Model	BLEU			Consistency		base	$(T) \rightarrow(C) \rightarrow(S$
	EN	FR	Avg	Structural	Lexical		
base	55.7	23.9	39.8	55.3	70.7		
base +FT	55.7	24.9	40.3	54.5	71.4		
pipeline	55.7	23.6	39.7	95.7	96.0		
pipeline +FT	55.7	24.2	40.0	98.4	98.3		
dual +FT	56.9	25.6	41.3	65.1	79.1		dual
share +FT	56.5	25.8	41.2	66.7	80.0		

- Pipeline worse in quality, higher in consistency
- dual improves translation quality, with higher consistency than base

Multilingual Subtitling

Model	BLEU			Consistency			$(T) \rightarrow(C) \rightarrow S$
	EN	FR	Avg	Structural	Lexical		
base	55.7	23.9	39.8	55.3	70.7		
base +FT	55.7	24.9	40.3	54.5	71.4		
pipeline	55.7	23.6	39.7	95.7	96.0		,
pipeline +FT	55.7	24.2	40.0	98.4	98.3		
dual + FT	56.9	25.6	41.3	65.1	79.1		dual
share +FT	56.5	25.8	41.2	66.7	80.0		

- Pipeline worse in quality, higher in consistency
- dual improves translation quality, with higher consistency than base
- Sharing decoder parameters delivers similar results, better consistency than dual, and fewer parameters

[^0]: ${ }^{2}$ Average over 3 directions: $\mathrm{De} \rightarrow \mathrm{En} / \mathrm{Fr}, \mathrm{En} \rightarrow \mathrm{De} / \mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{Zh} / \mathrm{Ja}$.

[^1]: ${ }^{2}$ Average over 3 directions: $\mathrm{De} \rightarrow \mathrm{En} / \mathrm{Fr}, \mathrm{En} \rightarrow \mathrm{De} / \mathrm{Fr}$ and $\mathrm{En} \rightarrow \mathrm{Zh} / \mathrm{Ja}$.

[^2]: ${ }^{3}$ Average over 4 directions: $\mathrm{En} \rightarrow \mathrm{De} / \mathrm{Fr} / \mathrm{Zh} / \mathrm{Ja}$.

