
GRAPH-BASED SEMANTIC PARSING, 
COMPOSITIONAL GENERALIZATION 

AND LOSS FUNCTIONS

Caio Corro 
Université Paris-Saclay, LISN, CNRS

https://caio-corro.fr

 1

https://caio-corro.fr


SEMANTIC PARSING

Related publication 

On graph-based reentrancy-free semantic parsing 
Alban Petit, Caio Corro 
TACL 2023

 2



SEMANTIC PARSING

 3

I want to book a flight from Paris to Rome.

SELECT * FROM  flight WHERE  from = "paris" AND to = "rome" 

⇒

SQL parsing 
➤ Input: sentence 
➤ Output: SQL query

Abstract Meaning Representation (AMR) parsing 
➤ Input: sentence 
➤ Output: graph

The boy want to go. ⇒



REENTRANCY-FREE SEMANTIC PARSING

 4

exclude ( river_all , traverse_2 ( stateid('Tennesse') ) )

What rivers do not run through Tennesse?

Reentrancy-free semantic structures 
➤ Predicates and entities are typed (in the same sense than in “typed programming languages") 
➤ An argument can only be used once 
Semantic structures look like a simple instruction in a functional programming language.

⇒
Is this realistic? 

"estimating that there are only 0.3% queries that would require a more general [..] representation."

Task Oriented Parsing (TOP) dataset [Gupta et al., 2018]



COMPOSITIONAL GENERALIZATION
Compositionality:  "the meaning of a complex expression is constructed from 

the meanings of its constituent parts" (Kim & Linzen, 2020)

Compositional generalization: "Once a person learns the meaning of a new verb dax, he or 
she can immediately understand the meaning of dax twice 
or sing and dax." (Lake & Baroni, 2018)

 5



GRAPH-BASED SEMANTIC PARSING

 6



SYNTACTIC PARSING: CONSTITUENCY PARSING

They walk the dog

NP
VP

NP

S

Constituency parsing complexity with formal grammars

Context-free grammars

Well-nested LCFRS with a fan-out of 2

𝒪(n3)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[Sakai, 1961]

LCFRS with bounded fan-out NP-hard [Satta, 1992]

𝒪(n6)

𝒪(n2k+2)
[Gómez-Rodríguez et al., 2010]

Well-nested LCFRS with a fan-out of k, k > 2

What do?Ishould

WHNP NP

VP
SQ

SBARQ

 7



SYNTACTIC PARSING: CONSTITUENCY PARSING

They walk the dog

NP
VP

NP

S

Constituency parsing complexity with formal grammars

Context-free grammars

Well-nested LCFRS with a fan-out of 2

𝒪(n3)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[Sakai, 1961]

LCFRS with bounded fan-out NP-hard [Satta, 1992]

𝒪(n6)

𝒪(n2k+2)
[Gómez-Rodríguez et al., 2010]

Well-nested LCFRS with a fan-out of k, k > 2

What do?Ishould

WHNP NP

VP
SQ

SBARQ

Constituency parsing complexity with span-based parsers 
➤ Ensure the well-formedness of the resulting structure 
➤ Do not enforce compliance of the syntactic content represented by the structure 

(e.g. a verbal phrase is not constrained to contain a verb) 
Similar complexity than formal grammar parsers [Stern et al., 2017] [Corro, 2020]  7



SPAN-BASED SEMANTIC PARSING

 8

[Herzig & Berant, 2021]

Outline 
➤ Use a span-based constituency parser for semantic parsing 

(with extra valency constraints) 
➤ Show that it is more robust to compositional generalization than seq-2-seq models



SPAN-BASED SEMANTIC PARSING

 9

[Herzig & Berant, 2021]

Limitation 

The parser allows only a limited form of discontinuity that can be parsed in [Corro, 2020]𝒪(n3)

The constituent in red is discontinuous and also has a discontinuous parent (red+green) 
=> outside the search space of the algorithm!



SYNTACTIC PARSING: DEPENDENCY PARSING

They walk the dog*

ROOT

SUBJ

OBJ

DET

Dependency parsing complexity (among many other algorithms!)

Projective

Well-nested + 2-bounded block degree

Well-nested + k-bounded block degree, k > 2

k-bounded block degree, k > 2

Unrestricted (a.k.a. non-projective)

𝒪(n3)

𝒪(n7)

NP-complete

𝒪(n2)

In
cr

ea
si

ng
 

se
ar

ch
 s

pa
ce

[McDonald et al., 2005]

[Eisner, 2000]

[Gómez-Rodríguez et al. 2009]

[Satta, 1992]

𝒪(n3+2k)

[Tarjan, 1977]

 10



GRAPH-BASED PARSING

Very deep neural network

They walk the dog.

They walk the dog

Prediction with a graph-based parser 

Assume an input sentence with n words: 
1. Create a complete directed graph with n vertices 
2. Weight all arcs using a neural network 
3. Compute the maximum spanning arborescence of the graph

 11



GRAPH-BASED SEMANTIC PARSING

exclude ( river_all , traverse_2 ( stateid('Tennesse') ) )

exclude

river_all traverse_2

stateid('Tennesse')

 12

Intuition 

The semantic program can be represented by its abstract syntax tree (AST) 
=> just predict the AST!



GRAPH-BASED SEMANTIC PARSING

exclude ( river_all , traverse_2 ( stateid('Tennesse') ) )

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

excluderiver_all traverse_2 stateid
 12

Intuition 

The semantic program can be represented by its abstract syntax tree (AST) 
=> just predict the AST!

Graph-based prediction 

Joint tagging (entity+predicate) and parsing (argument identification) 
➤ Non-spanning structure (function words, etc) 
➤ Valency constraints 
➤ Non-projective structure



GRAPH-BASED SEMANTIC PARSING

 13

Semantic grammar 

A semantic grammar is a tuple                                               where: 
➤                                 is a set of predicates and entities (set of tags) 
➤                                 is a set of type 
➤                                 is a typing function that assigns a type to each tag 
➤                                 is a valency function that assigns the numbers of expected arguments of a given type

E
𝒢 = ⟨ E, T, ftype, fargs ⟩

T

ftype : E → T

fargs : E × T → ℕ

AST recognition 

A labeled graph is a valid AST if and only if it can be recognized by the grammar 

exclude

river_all traverse_2

stateid('Tennesse')

𝒢



GRAPH-BASED SEMANTIC PARSING

 14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }



GRAPH-BASED SEMANTIC PARSING

 14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype( river_all)  = river

ftype( state_id ) = state

ftype( traverse_2 ) = river

ftype( exclude ) = river

. . .



GRAPH-BASED SEMANTIC PARSING

 14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype( river_all)  = river

ftype( state_id ) = state

ftype( traverse_2 ) = river

ftype( exclude ) = river

. . .

fargs( river_all, ... ) = 0

fargs( state_id, ... ) = 0
Entities

For all types



GRAPH-BASED SEMANTIC PARSING

 14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype( river_all)  = river

ftype( state_id ) = state

ftype( traverse_2 ) = river

ftype( exclude ) = river

. . .

fargs( river_all, ... ) = 0

fargs( state_id, ... ) = 0

fargs( traverse_2, river ) = 0

fargs( traverse_2, state ) = 1



GRAPH-BASED SEMANTIC PARSING

 14

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . }

exclude

river_all traverse_2

stateid('Tennesse')

T = {river, state, . . . }

ftype( river_all)  = river

ftype( state_id ) = state

ftype( traverse_2 ) = river

ftype( exclude ) = river

. . .

fargs( river_all, ... ) = 0

fargs( state_id, ... ) = 0

fargs( traverse_2, river ) = 0

fargs( traverse_2, state ) = 1

fargs( exclude, river ) = 2

fargs( exclude, state ) = 0

. . .



GRAPH-BASED SEMANTIC PARSING

 15

Example

E = {exclude, river_all, traverse_1, traverse_2, state_id, . . . } T = {river, state, . . . }

ftype( river_all)  = river

ftype( state_id ) = state

ftype( traverse_2 ) = state

ftype( exclude ) = river

. . .

fargs( river_all, ... ) = 0

fargs( state_id, ... ) = 0

fargs( traverse_2, river ) = 0

fargs( traverse_2, state ) = 1

fargs( exclude, river ) = 2

fargs( exclude, state ) = 0

exclude

river_all stateid('Tennesse')

Invalid AST 
for this grammar! . . .



REDUCTION TO A GRAPH PROBLEM

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

 16

All predicates 
and entitiesRoot

Graph construction 

1. For each word, create a cluster 
2. In each cluster, create one vertex per element of  T 
3. Add all possible arcs (with weights from the neural network)



REDUCTION TO A GRAPH PROBLEM

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

 17

AST parsing 

Compute the rooted arborescence of maximum weight such that: 
➤ There is at most one incident vertex per cluster 
➤ Valency constraints are satisfied

Predicate "exclude" is 
associated with word "not"

Dependencies assign 
arguments



NP-HARDNESS

Issue 

This problem is NP hard! :( 
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

 18

AST parsing 

Compute the rooted arborescence of maximum weight such that: 
➤ There is at most one incident vertex per cluster 
➤ Valency constraints are satisfied



NP-HARDNESS

Issue 

This problem is NP hard! :( 
(proof: by reduction of the maximum not-necessarily spanning arborescence problem)

 18

AST parsing 

Compute the rooted arborescence of maximum weight such that: 
➤ There is at most one incident vertex per cluster 
➤ Valency constraints are satisfied

Approximate solver 

1. Formulation as a integer linear program 
2. Relaxation of the integrality constraint 
3. Identifying the difficult constraints 

and add them as penalties in the objective 
4. Custom optimization algorithm based on the problem structure 

(indicator function smoothing + Frank-Wolfe)

max
z∈[0,1]d

⟨z, ϕ⟩

s.t. z ∈ 𝒞(easy)

z ∈ 𝒞(hard)

Valency constraints!



ALGORITHME INTUITION

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

∅

 19

Problem reformulation 

To simplify the algorithm, we add "empty entities": 
➤ The root must have exactly one outgoing arc to a non-empty entity/predicate 
➤ The "empty entities" cannot have outgoing arcs in a solution



ALGORITHME INTUITION

 20
List states

Input sentence



ALGORITHME INTUITION

 21
List states

state_all

loc_1

∅

Create vertices

In theory, we have all 
predicates/entities



ALGORITHME INTUITION

 22
List states

state_all

loc_1

∅

Create arcs



ALGORITHME INTUITION

 23
List states

state_all

loc_1

∅
0 0

1

1

-1

0

1.5
1.5

-1
-1

-1

-1

-1
-1

0

-1

-1

-1

Create weights 
using the neural 



ALGORITHME INTUITION

 24
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Add vertex weight 
to incoming arcs

-1+0

-1+0



ALGORITHME INTUITION

 25
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Interpret clusters 
as nodes

-1+0

-1+0



ALGORITHME INTUITION

 26
List states

state_all

loc_1

∅

1+0

1.5+1

-1+0

-1+0

Remove parallel arcs



ALGORITHME INTUITION

 27
List states

state_all

loc_1

∅

1+0

1.5+1

-1+0

-1+0

Compute the maximum spanning 
arborescence over clusters



ALGORITHME INTUITION

 28
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0

-1+0

Reconstruct full graph



ALGORITHME INTUITION

 29
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+1
-1-1

-1-1

-1-1

-1-1
-1+0

Look at the 
solution on the 
original graph

-1+1

-1+0



ALGORITHME INTUITION

 30
List states

state_all

loc_1

∅
0 0

1-1

1+0

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

loc_1 expects 
an argument! :(

-1+0

-1+0



ALGORITHME INTUITION

 31
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

Add penalties
-1+0+3

-1+0



ALGORITHME INTUITION

 32
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0



ALGORITHME INTUITION

 33
List states

state_all

loc_1

∅
0

1.5+1

-1+0

-1+0+3



ALGORITHME INTUITION

 34
List states

state_all

loc_1

∅
0

1.5+1

-1+0

-1+0+3



ALGORITHME INTUITION

 35
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0



ALGORITHME INTUITION

 36
List states

state_all

loc_1

∅
0 0

1-1

1+0-3

1.5-1
1.5+1

-1+0
-1-1

-1-1

-1-1

-1-1
-1+0

-1+0+3

-1+0



ALGORITHME INTUITION

 37

state_all

∅

We need to remove 
empty entities



ALGORITHME INTUITION

 38

state_all

This is a valid AST!



SUPERVISED LEARNING

 39



NEGATIVE LOG-LIKELIHOOD

 40

Notations 
➤ Search space: directed graph                        where V is the set of vertices and                         is the set of arcs 
➤ Vertex selection vector: 
➤ Arc selection vector: 
➤ Set of feasible solution (i.e. set of ASTs):

G = (V, A) A ⊆ V × V
x ∈ {0,1}V

y ∈ {0,1}A

(x, y) ∈ 𝒞

Weight vectors 
➤ Vertex weights: 
➤ Arc weights:

μ ∈ ℝV

ϕ ∈ ℝA



NEGATIVE LOG-LIKELIHOOD

 40

Notations 
➤ Search space: directed graph                        where V is the set of vertices and                         is the set of arcs 
➤ Vertex selection vector: 
➤ Arc selection vector: 
➤ Set of feasible solution (i.e. set of ASTs):

G = (V, A) A ⊆ V × V
x ∈ {0,1}V

y ∈ {0,1}A

(x, y) ∈ 𝒞

Weight vectors 
➤ Vertex weights: 
➤ Arc weights:

μ ∈ ℝV

ϕ ∈ ℝA

where

Boltzmann distribution over ASTs

pμ,ϕ(x, y) = {exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) ) if (x, y) ∈ 𝒞
0 otherwise,

c(μ, ϕ) = log ∑
(x′ ,y′ )∈𝒞

exp (⟨μ, x′ ⟩ + ⟨ϕ, y′ ⟩ )

Log-partition function



NEGATIVE LOG-LIKELIHOOD

 41

Boltzmann distribution over ASTs

pμ,ϕ(x, y) = {exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) ) if (x, y) ∈ 𝒞
0 otherwise,

c(μ, ϕ) = log ∑
(x′ ,y′ )∈𝒞

exp (⟨μ, x′ ⟩ + ⟨ϕ, y′ ⟩ )where

Log-partition function

ℓ(μ, ϕ; x, y) = − log pμ,ϕ(x, y)

Negative log-likelihood loss

= − ⟨μ, x⟩ − ⟨ϕ, y⟩ + c(μ, ϕ)

(probably) intractable!

! We cannot compute the loss function! :(



VARIATIONAL APPROXIMATION

 42

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs



VARIATIONAL APPROXIMATION

 42

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs



VARIATIONAL APPROXIMATION

 42

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

U =

z(1)
1 , z(1)

1 , . . . , z(1)
d

z(2)
1 , z(2)

1 , . . . , z(2)
d

⋮
⋮

z(k)
1 , z(k)

1 , . . . , z(k)
d

Uθ =

⟨z(1), θ⟩
⟨z(2), θ⟩

⋮
⋮

⟨z(k), θ⟩

Each row is a 
feasible AST

Weight of each AST

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

Fenchel bi-conjugate



VARIATIONAL APPROXIMATION

 42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Marginal distribution

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs



VARIATIONAL APPROXIMATION

 42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

= max
z∈conv(𝒵)

⟨z, θ⟩ + Ω(z)

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

Implicitly defined so the two 
problems are equivalent

Marginal polytope

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs



VARIATIONAL APPROXIMATION

 42

= max
p∈△k

⟨p, Uθ⟩ − ∑
i

pi log pi

=H[p]

= max
p∈△k (p⊤U) θ + H[p]

= max
z∈conv(𝒵)

⟨z, θ⟩ + Ω(z)

c(θ) = log ∑
z∈𝒵

exp ⟨θ, z⟩

Upper bound on the log-partition function

≤ max
z∈ℒ

⟨z, θ⟩ + H(z) Mean regularization

Outer approximation

Change of notation

z = [x
y] θ = [μ

ϕ] 𝒵 = { z(1), z(1), …, z(k) }

Set of feasible ASTs



VARIATIONAL APPROXIMATION

 43

Upper bound on the log-partition function 

We need to choose           such that the bound is easy to compute. 

Note that each feasible solution in             satisfies the following conditions: 
1. Each cluster has exactly one selected vertex 
2. Each cluster (except the root) has exactly one incoming arc

c(θ) ≤ max
z∈ℒ

⟨z, θ⟩ + H(z) = c̃(θ)

ℒ

𝒞

Which states do not border Texas?

exclude

next_to_2

stateid

state_all

area_1

∅



VARIATIONAL APPROXIMATION

 43

Upper bound on the log-partition function 

We need to choose           such that the bound is easy to compute. 

Note that each feasible solution in             satisfies the following conditions: 
1. Each cluster has exactly one selected vertex 
2. Each cluster (except the root) has exactly one incoming arc

c(θ) ≤ max
z∈ℒ

⟨z, θ⟩ + H(z) = c̃(θ)

ℒ

𝒞

Token-separable negative log-likelihood 

Define             as the convex hull of structures that satisfy (1) and (2), 
Then: 

is simply a sum of negative log-likelihood losses. For each cluster: 
➤ One NLL over all vertices in the cluster 
➤ One NLL over all incoming arcs in the cluster

ℓ(μ, ϕ; x, y) ≤ − ⟨μ, x⟩ − ⟨ϕ, y⟩ + c̃(μ, ϕ)

ℒ



WEAKLY-SUPERVISED LEARNING

 44



DATASETS

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

 45

Annotation issue 

In most dataset, the entities and predicates are not anchored!

Input:

Output:

Example



WEAKLY SUPERVISED LOSS

 46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) )

= − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) + c(μ, ϕ)



WEAKLY SUPERVISED LOSS

 46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) )

= − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ )

Lower bound on the first term

Proposal distribution



WEAKLY SUPERVISED LOSS

 46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) )

= − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ )

≥ ∑
(x,y)∈𝒞*

q(x, y) log
exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ )

q(x, y)

Lower bound on the first term

Jensen's inequality



WEAKLY SUPERVISED LOSS

 46

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) = − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ − c(μ, ϕ) )

= − log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) + c(μ, ϕ)

log ∑
(x,y)∈𝒞*

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ ) = log ∑
(x,y)∈𝒞*

q(x, y)
q(x, y)

exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ )

≥ ∑
(x,y)∈𝒞*

q(x, y) log
exp( ⟨μ, x⟩ + ⟨ϕ, y⟩ )

q(x, y)

= 𝔼q [ ⟨μ, x⟩ + ⟨ϕ, y⟩ ] + H[q]

Lower bound on the first term

As usual: 
➤ The bound is tight if  q  is equal to the posterior distribution, "à la" EM 
➤ We can instead use a proposal that put all the mass on single value, "à la" hard EM



WEAKLY SUPERVISED LOSS

 47

ℓ̃ (μ, ϕ; 𝒞*) = − log ∑
(x,y)∈𝒞*

pμ,ϕ(x, y) ≤ 𝔼q [ ⟨μ, x⟩ + ⟨ϕ, y⟩ ] + H[q] + c̃(μ, ϕ)

Hard-EM like optimization 
➤ (E step) Compute the best alignment between vertices in the AST and words in the sentence 
➤ (M step) One gradient step on the neural network parameters

exclude

river_all traverse_2

stateid('Tennesse')

What rivers do not run through Tennesse?

NP-hardness 

The E step is a NP-hard problem  => approximate solver based on constraint relaxation 
+ dynamic programming



EXPERIMENTAL RESULTS

 48



DATASETS
SCAN: Simplified version of the CommAI Navigation tasks 
➤ Input : command 
➤ Output : action sequence

[Lake & Baroni, 2018]

jump ⇒ JUMP
jump left ⇒ LTURN JUMP
jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ⇒ LTURN LTURN
jump thrice ⇒ JUMP JUMP JUMP
jump opposite left and walk thrice ⇒ LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left 

⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

SCAN-SP 

Variant of scan where outputs are reformulated as functional programs

[Herzig & Berant, 2021]

run around left twice and jump left 

⇒ i_and ( i_twice ( i_run ( i_left , i_around ) ) , i_jump ( i_left ) )
 49



DATASETS
SCAN : IID 

Random split of the data

 50



DATASETS
SCAN : IID 

Random split of the data

SCAN : Right 
➤ The term "right" is never seen without a manner adverbs (around, opposite) during training 
➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

Train 

jump left 

turn left 

jump around left

jump around right 

turn opposite right 

turn around left 
...

Test 

jump right 

turn right 

...

 50



DATASETS
SCAN : IID 

Random split of the data

SCAN : Right 
➤ The term "right" is never seen without a manner adverbs (around, opposite) during training 
➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

SCAN : Around right 
➤ Test test set contains all exemple with "around right" 
➤ The train set contains all other examples

Train 

jump left 

jump right 

jump around left

jump opposite right 

turn opposite right 

turn around left 
...

Test 

jump around right 

turn around right 

...

 50



DATASETS
SCAN : IID 

Random split of the data

train dev test

IID 13 383 3 345 4 182

Right 12 180 3 045 4 476

ARight 12 180 3 045 4 476

SCAN : Right 
➤ The term "right" is never seen without a manner adverbs (around, opposite) during training 
➤ The model must learn to generalize to the simplest usage of right 

(as seen during training for "left")

SCAN : Around right 
➤ Test test set contains all exemple with "around right" 
➤ The train set contains all other examples

 50



DATASETS
GeoQuery 
➤ Input: question related to USA geography  
➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all))))) 
how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

 51



DATASETS
GeoQuery 
➤ Input: question related to USA geography  
➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all))))) 
how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID 

Random split of the data

 51



DATASETS
GeoQuery 
➤ Input: question related to USA geography  
➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all))))) 
how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID 

Random split of the data

SCAN : Template 

All sentences that shares the same semantic template are used only for training or only for testing.

name the rivers in arkansas 

name all the rivers in colorado 

name all the rivers in colorado 

rivers in new york ? 

what are all the rivers in texas ? 

...

 51



DATASETS
GeoQuery 
➤ Input: question related to USA geography  
➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all))))) 
how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID 

Random split of the data

SCAN : Template 

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length 

Test sentences are (in average) longer than train sentences

Train 
➤ sentence length: min=4 / max=13 / mean=7.5 
➤ program length: min=1 / max=4 / mean=3.1

Test 
➤ sentence length: min=7 / max=18 / mean=10.5 
➤ program length: min=2 / max=9 / mean=5.2

 51



DATASETS
GeoQuery 
➤ Input: question related to USA geography  
➤ Output: query that can be executed against a database

what state has the largest city? ⇒ answer(state(loc_1(largest(city(all))))) 
how many square kilometers in the us? ⇒ answer(area_1(countryid('usa')))

SCAN : IID 

Random split of the data

SCAN : Template 

All sentences that shares the same semantic template are used only for training or only for testing.

SCAN : Length 

Test sentences are (in average) longer than train sentences

train dev test

IID 540 60 280

Template 544 60 276

Length 540 60 280  51



DATASETS
Clevr 
➤ Input: question related to objects in a picture  
➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

 52



DATASETS
Clevr 
➤ Input: question related to objects in a picture  
➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID 

Random split of the data

 52



DATASETS
Clevr 
➤ Input: question related to objects in a picture  
➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID 

Random split of the data

SCAN : Closure 
➤ Questions in Clevr are generated from 80 templates 
➤ Questions in Closure are generated from 7 new templates

 52



DATASETS
Clevr 
➤ Input: question related to objects in a picture  
➤ Output: query that can be executed against a database

Are there any shiny objects that have the same color as the matte block?

⇒ exist(filter(metal,relate_att_eq(color,filter(rubber,cube,scene()))))

SCAN : IID 

Random split of the data

SCAN : Closure 
➤ Questions in Clevr are generated from 80 templates 
➤ Questions in Closure are generated from 7 new templates

train dev test

IID 694 689 5 000 149 991

Closure 694 689 5 000 25 200  52



EXPERIMENTAL RESULTS

 53

All baselines are from 
[Herzig & Berant, 2021]



EXPERIMENTAL RESULTS

 53

Neural network 

BERT-base + BiLSTM + Biaffine (details in the appendix of the paper)



TOKEN-SEPARABLE LOSS FUNCTIONS

Related publication 

On the inconsistency of separable losses for structured prediction 
Caio Corro 
EACL 2023

 54



LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations 

We approximate the log-partition function in the loss, 
how does this impact the solution of the training problem?

 55



LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations 

We approximate the log-partition function in the loss, 
how does this impact the solution of the training problem?

Very deep neural network

They walk the dog.

Simpler example: syntactic dependency parsing 
➤ Compute the maximum spanning arborescence : 
➤ Summing over all arborescences :                   (via the matrix tree theorem, MTT) 

➤ Numerically instable (matrix inversion) 
➤ Not very fast on GPU compared to simpler losses 
➤ Non-trivial to implement

𝒪(n3)
𝒪(n2) [Tarjan, 1977]

[Koo et al., 2007] [McDonald & Satta, 2007] 
[Smith & Smith, 2007]

 55



LOSS FUNCTIONS AND BAYES CONSISTENCY
Motivations 

We approximate the log-partition function in the loss, 
how does this impact the solution of the training problem?

Very deep neural network

They walk the dog.

Simpler example: syntactic dependency parsing 
➤ Compute the maximum spanning arborescence : 
➤ Summing over all arborescences :                   (via the matrix tree theorem, MTT) 

➤ Numerically instable (matrix inversion) 
➤ Not very fast on GPU compared to simpler losses 
➤ Non-trivial to implement

𝒪(n3)
𝒪(n2) [Tarjan, 1977]

[Koo et al., 2007] [McDonald & Satta, 2007] 
[Smith & Smith, 2007]

Head selection loss 

As each word has exactly one head 
=> one multi-class classification loss per word 
(equivalent to log-partition approximation)

[Zhang et al., 2017]

 55



MULTICLASS CLASSIFICATION

Notations 
➤                          : number of classes 
➤                          : input space 
➤                          : output space, set of one-hot vectors of dimension k 
➤                          : scoring function 
➤                          : prediction function,

f : X → ℝk

k
X
Y

ŷ(w) = arg maxy∈Y ⟨w, y⟩ŷ : ℝk → Y

Input space Output spaceScore space

ℝk YX

x
w

y

 56



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

 57



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r( f ) = inf
f∈F

𝔼x,y[ ℓ( f(x), y) ] = 𝔼x[ 1 − max
y∈Y

p(y |x) ]

Optimal Bayes risk

 57



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r( f ) = inf
f∈F

𝔼x,y[ ℓ( f(x), y) ] = 𝔼x[ 1 − max
y∈Y

p(y |x) ]

Bayes risk of f

 57



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r( f ) = inf
f∈F

𝔼x,y[ ℓ( f(x), y) ] = 𝔼x[ 1 − max
y∈Y

p(y |x) ]

Training objective!

 57



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r( f ) = inf
f∈F

𝔼x,y[ ℓ( f(x), y) ] = 𝔼x[ 1 − max
y∈Y

p(y |x) ]

Bayes risk when we predict 
the most probable output for 

each input

 57



BAYES RISK MINIMIZATION
0-1 loss function 

Returns 1 if the output will be incorrect for a given score vector

ℓ(w, y) = {0 if y ∈ arg maxy′ ∈Y ⟨y′ , w⟩,

1 otherwise.
ℓ : ℝk × Y → ℝ+

Optimal Bayes risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r* = inf
f∈F

r( f ) = inf
f∈F

𝔼x,y[ ℓ( f(x), y) ] = 𝔼x[ 1 − max
y∈Y

p(y |x) ]

Bayes risk minimization 
➤ The 0-1 loss function is not convex in 
➤ The derivatives of the objective are null a.e. 
➤ The problem is know to be intractable even in simple cases

w

 57



SURROGATE LOSSES

Motivations 

We can not use the 0-1 loss         for training, therefore we want to use a surrogate loss      , 
are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

 58



SURROGATE LOSSES

Motivations 

We can not use the 0-1 loss         for training, therefore we want to use a surrogate loss      , 
are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

Surrogate risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r̃* = inf
f∈F

r̃( f ) = inf
f∈F

𝔼x,y[ ℓ̃ ( f(x), y) ]

 58



SURROGATE LOSSES

Motivations 

We can not use the 0-1 loss         for training, therefore we want to use a surrogate loss      , 
are solutions of the surrogate training problem optimal Bayes classifiers?

ℓ ℓ̃

Bayes consistency 

A surrogate loss           is said to be Bayes consistent / Fisher consistent / classification calibrated if:ℓ̃

f* ∈ arg minf∈F r̃( f ) ⟹ r( f*) = r*

Surrogate risk 

Given a set of scoring function F, what is minimum average number of error we can obtain?

r̃* = inf
f∈F

r̃( f ) = inf
f∈F

𝔼x,y[ ℓ̃ ( f(x), y) ]

 58



POINTWISE CONSISTENCY

Standard assumptions 
➤ F is the set of all measurable mappings 
➤ Infinite number of training datapoints (i.e. expectation over the "true" data distribution)

Pointwise setting 
➤ Choose a datapoint                  such that 
➤ Redefine the Bayes and surrogate risks as expectation over the conditional distribution 
➤ Minimize over the score vector                   instead of over function set F, where

x ∈ X p(x) > 0
p(y |x)

w = f(x)w ∈ ℝk

r* = inf
w∈ℝk

r(w) = inf
w∈ℝk

𝔼y|x[ ℓ(w, y) ] = 1 − max
y∈Y

p(y |x)

r̃* = inf
w∈ℝk

r̃(w) = inf
w∈ℝk

𝔼y|x[ ℓ̃ (w, y) ]

 59



NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′ ∈Y

exp⟨w, y′ ⟩ = − ⟨w, y⟩ + c(w)

 60



NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′ ∈Y

exp⟨w, y′ ⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ ℓ̃ (w, y) ]

= inf
w∈ℝk

𝔼y|x[ − ⟨w, y⟩ + c(w) ]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

 60



NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′ ∈Y

exp⟨w, y′ ⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ ℓ̃ (w, y) ]

= inf
w∈ℝk

𝔼y|x[ − ⟨w, y⟩ + c(w) ]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

Optimality conditions 

Let: 
 

By first order optimality conditions:

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c( ̂w )) = 0

➤          be a minimizer of the problem above 
➤          the one-hot vector for which

̂w
y(i) y(i)

i = 1

 60



NEGATIVE LOG-LIKELIHOOD
Negative log-likelihood loss

ℓ̃ (w, y) = − ⟨w, y⟩ + log ∑
y′ ∈Y

exp⟨w, y′ ⟩ = − ⟨w, y⟩ + c(w)

Surrogate risk
inf

w∈ℝk
r̃(w) = inf

w∈ℝk
𝔼y|x[ ℓ̃ (w, y) ]

= inf
w∈ℝk

𝔼y|x[ − ⟨w, y⟩ + c(w) ]

= inf
w∈ℝk

− ⟨w, Ey|x[y] ⟩ + c(w)

⟹
exp ̂w i

∑j exp ̂w j
= p(y(i) |x)

Optimality conditions 

Let: 
 

By first order optimality conditions:

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c( ̂w )) = 0

➤          be a minimizer of the problem above 
➤          the one-hot vector for which

̂w
y(i) y(i)

i = 1
Bayes consistent!

 60



EXAMPLE

Optimality conditions

∂
∂ ̂w i

(−⟨ ̂w , Ey|x[y] ⟩ + c( ̂w )) = 0 ⟹
exp ̂w i

∑j exp ̂w j
= p(y(i) |x)

p(y(1) |x) = 0.7

p(y(2) |x) = 0.1

p(y(3) |x) = 0.2

1
2
3

log 0.7
log 0.1
log 0.2

̂w

⟹ ̂w i = log p(y(i) |x)

Example

 61



DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees 
➤ Sentence length: 2 ➤ No single root constraint

 62



DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees 
➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

 62



DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees 
➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

̂w (a) = log p(a |x)

̂w (b) = log p(b |x)

̂w (c) = log p(c |x)

Optimality conditions

 62



DEPENDENCY PARSING

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Distribution over dependency trees 
➤ Sentence length: 2 ➤ No single root constraint

w(a) = w0→1 + w1→2 w(b) = w0→1 + w0→2 w(c) = w0→2 + w2→1

Arc factored scoring function

̂w (a) = log p(a |x)

̂w (b) = log p(b |x)

̂w (c) = log p(c |x)

Optimality conditions

̂w 0→1 + ̂w 1→2 = log p(a |x)

̂w 0→1 + ̂w 0→2 = log p(b |x)

̂w 0→2 + ̂w 2→1 = log p(c |x)

⇔
 62



DEPENDENCY PARSING

0 1 2

0

1

2

log 0.4

log 0.30

0

̂w

Distribution over dependency trees 
➤ Sentence length: 2 ➤ Single root

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Optimality conditions

̂w 0→1 + ̂w 1→2 = log p(a |x)

̂w 0→1 + ̂w 0→2 = log p(b |x)

̂w 0→2 + ̂w 2→1 = log p(c |x)

Head index

Modifier index

 63



TOKEN-SEPARABLE LOSS FUNCTIONS
Distribution over dependency trees 
➤ Sentence length: 2 ➤ Single root

p(b |x) = 0.3p(a |x) = 0.4 p(c |x) = 0.3

Main idea 

As each word has exactly one head, instead of minimizing the NLL over the dependency tree distribution, 
we can minimize one multiclass classification NLL per word

 64



TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0 ? ?

1 ?

2 ?

0 1 2

̂w

 65



TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0 ?

1 ?

2

0 1 2

log 0.7

log 0.3

Focus on vertex 1 
➤ Probability to have vertex 0 as head: 
➤ Probability to have vertex 2 as head:

p(a |x) + p(b |x) = 0.4 + 0.3 = 0.7
p(c |x) = 0.3

̂w

 66



TOKEN-SEPARABLE LOSS FUNCTIONS

0 1 2

0

1

2

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

Focus on vertex 2 
➤ Probability to have vertex 0 as head: 
➤ Probability to have vertex 1 as head:

p(b |x) + p(c |x) = 0.3 + 0.3 = 0.6
p(a |x) = 0.4

log 0.6

log 0.4

log 0.7

log 0.3

̂w

 67



TOKEN-SEPARABLE LOSS FUNCTIONS

p(b |x) = 0.3

p(a |x) = 0.4

p(c |x) = 0.3

0 1 2

0

1

2

0 1 2

̂w (a) = ̂w 0→1 + ̂w 1→2 = log 0.7 + log 0.4

log 0.7

log 0.3

log 0.6

log 0.4

< log 0.7 + log 0.6 = ̂w 0→1 + ̂w 0→2 = ̂w (b)

̂w

NOT Bayes consistent :(

 68



INTERMEDIATE CONCLUSION

Should we care about loss function properties? 

Machine learning is at the core of modern NLP models, so yes.

Should we care about Bayes consistency? 

Clearly, separable losses work in practice, but: 
➤ We need theory, "it works" is not good enough 
➤ Previous work showed that Bayes consistency may be misleading as it ignore the structure 

of the scoring function

Other examples of separable losses 
➤ Token level NLL for BIO tagging (ignores the fact that a I tag can not follow a O tag) 
➤ Semantic parsing 
➤ Discontinuous constituency parsing

[Panupong et al., 2019]
[Corro, 2020]

[Long and Servedio, 2013]

Take home message 

Token-separable losses are not necessarily Bayes consistent.

 69



CONCLUSION

 70



CONCLUSION

(advertising) Book on discrete latent structure in neural networks 

https://arxiv.org/abs/2301.07473

Take home message 2 
➤ Loss functions are the cornestone of machine learning 
➤ NLP has a lot of interesting learning problems were theory is missing 
For other examples in NLP, check: [Effland & Collins, 2021][Ma & Collins, 2018]

Take home message 1 

Structured prediction is not dead: 
➤ seq-2-seq models are know to fail in several generalization settings (compositional, structural, ...) 
➤ Beside syntactic parsing and alignment models for MT, 

there are many NLP problems for which combinatorial algorithms have been understudied. 
See for example                             for NER 

➤ Open question: how to embed "structural knowledge" in seq-2-seq models?

[Corro, 2022]

obvious 
exaggeration :)

 71

https://arxiv.org/abs/2301.07473

