The (Undesired) Attenuation of Human Biases by Multilinguality

Cristina España-Bonet & Alberto Barrón-Cedeño DFKI GmbH Universitá di Bologna

> INRIA-ALMAnaCH Seminar (extended version of EMNLP'22)

> > 16th December 2022

Most multilingual models *just* use a combination of monolingual corpora for training.

Are we distorting semantics?

[https://en.wikipedia.org/wiki/Point-set_registration]

1 What is a Bias and how do we Measure them

- 2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)
- 3 Experiments

Non-Social Human Biases

IAT1: difference in response time

(flowers & insects)

Non-Social Human Biases

IAT2: difference in response time

(musical instruments & weapons)

WEAT, Intuition

Intuition, in our Embedding Space we can Measure Distances

Companya a 123 manthan and Ivery you and rational And a second sec achirot And The second s hanathood watering and another And a second sec A DESCRIPTION OF THE OWNER Specify and Party Sectors in Sectors Same All and a second s Jesta enatery agel anter eterer a affeifet tim a surgemention And the second state of th atom atom atom atom atom atom atom atom um. And the state of t Arnord Mrs. Control Control Control Antonio and a second se Sections and the second second second mene der - wep High the state of the state beaution Const in Brent Ve in instore pertuder description of checkson 7 avoidanced King actions readed equality directel concept while and designed

Intuition, in our Embedding Space we can Measure Distances

and rations A Destant Wind destalling Constant and And a second state of the Automation Summer and a second sec abets. Mall Person And and the second seco milimoretie bidelicknown apperiting disard All in Feb intome pertuder description of and the set and designed

Intuition, in our Embedding Space we can Measure Distances

and rations ALC: Same Zeren Ale dense berten Sector bearing the and then a the state and the set and designed

Intuition, in our Embedding Space we can Measure Distances

and rational for a marine with ten pertuder and the set and designed

Intuition, in our Embedding Space we can Measure Distances

$$assoc(t, A) = rac{\sum_{m{a} \in A} cos(\mathbf{t}, \mathbf{a})}{|A|}$$

Intuition, in our Embedding Space we can Measure Distances

$$assoc(t, A) = \frac{\sum_{a \in A} cos(\mathbf{t}, \mathbf{a})}{|A|}$$

 $\Delta_{assoc}(t, A, B) = assoc(t, A) - assoc(t, B)$

What do we Measure?

The difference in association for a term:

$$\Delta_{\textit{assoc}}(t, A, B) = \textit{assoc}(t, A) - \textit{assoc}(t, B)$$

The statistic:

$$s(X, Y, A, B) = \sum_{x \in X} \Delta_{assoc}(x, A, B) - \sum_{y \in Y} \Delta_{assoc}(y, A, B)$$
$$s(\overrightarrow{\bullet}, \overrightarrow{\mp}, \overrightarrow{\Phi}, \overrightarrow{\Phi}) = \sum_{\bullet \in \overrightarrow{\bullet}} \Delta_{assoc}(\bullet, \overrightarrow{\Phi}, \overrightarrow{\Phi}) - \sum_{\overrightarrow{\mp} \in \overrightarrow{\mp}} \Delta_{assoc}(\mp, \overrightarrow{\Phi}, \overrightarrow{\Phi})$$

What do we Measure?

What do we Measure?

The statistic:

$$s(\overrightarrow{\bullet},\overrightarrow{*},\overrightarrow{\bullet},\overrightarrow{\bullet},\overrightarrow{\bullet}) = \sum_{\bullet\in\overrightarrow{\bullet}} \Delta_{assoc}(\bullet,\overrightarrow{\bullet},\overrightarrow{\bullet}) - \sum_{\overrightarrow{*}\in\overrightarrow{*}} \Delta_{assoc}(\ast,\overrightarrow{\bullet},\overrightarrow{\bullet})$$

The size effect:

$$d(\overrightarrow{\bullet}, \overrightarrow{*}, \overrightarrow{\bullet}, \overrightarrow{\bullet}, \overrightarrow{\bullet}) = \frac{\mu\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet}}\right) - \mu\left(\Delta_{assoc}(\ast, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \ast \in \overrightarrow{\ast}}\right)}{\sigma\left(\Delta_{assoc}(\diamond, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \diamond \in \overrightarrow{\bullet}}\right)}$$

Do Word Embeddings Reflect Implicit Human Associations?

[Caliskan et al., Nature, 2017]

Semantics derived automatically from language corpora contain human-like biases:

- morally neutral as toward insects or flowers, —our non-social—
- problematic as toward race or gender,
- veridical, reflecting the status quo distribution of gender with respect to careers or first names.

Do Word Embeddings Reflect Implicit Human Associations?

[Caliskan et al., Nature, 2017]

Semantics derived automatically from language corpora contain human-like biases:

- morally neutral as toward insects or flowers, —our non-social—
- problematic as toward race or gender,
- veridical, reflecting the status quo distribution of gender with respect to careers or first names.

For multilinguality we need universals \Rightarrow **non-social only**

Multilinguality and Cultural-Aware WEAT (CA-WEAT)

Outline

1 What is a Bias and how do we Measure them

- IAT: Implicit Association Tests
- WEAT: Association Tests in Word Embeddings

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)

3 Experiments

- Wide Overview
- WEAT vs X-WEAT vs CA-WEAT
- Data Asymmetries and Isomorphism

4 Conclusions

WEAT1 and WEAT2 Original Lists

WEAT1 target items		
*	Flowers	aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose, bluebell, daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation, gladiola, magnolia, petunia, zinnia
×	Insects	ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot, tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth, wasp, blackfly, dragonfly, horsefly, roach, weevil
WEAT2 target items		
*	Instruments	bagpipe, cello, guitar, lute, trombone, banjo, clarinet, harmonica, mandolin, trumpet, bassoon, drum, harp, oboe, tuba, bell, fiddle, harpsichord, piano, viola, bongo, flute, horn, saxophone, violin
-	Weapons	arrow, club, gun, missile, spear, axe, dagger, harpoon, pistol, sword, blade, dynamite, hatchet, rifle, tank, bomb, firearm, knife, shotgun, teargas, cannon, grenade, mace, slingshot, whip
WEAT1 and WEAT2 attributes		
۲	Pleasant	caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation
۲	Unpleasant	abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer, kill, rotten, vomit, agony, prison

Original and X-WEAT Lists

Original version (WEAT1, WEAT2)

[Battig and Montague, 1969; Bellezza et al., 1986; Greenwald et al., 1998]

- Collected from college students in Eastern US
- Frequent terms
- Non-ambiguous terms

Original and X-WEAT Lists

Original version (WEAT1, WEAT2)

[Battig and Montague, 1969; Bellezza et al., 1986; Greenwald et al., 1998]

- Collected from college students in Eastern US
- Frequent terms
- Non-ambiguous terms

Multilingual version (X-WEAT)

[Lauscher and Glavaš, 2019; Lauscher et al., 2020]

- Literal translation
- Arabic, Croatian, German, Italian, Russian, Spanish and Turkish

Features and Issues with WEAT and X-WEAT

- **WEAT**: American English, represents the culture of the (Eastern) US
- X-WEAT: Multilingual, but represents the culture of the (Eastern) US!
 —and this applies to all NLP using translation—
 - duplicates? (gun, pistol \rightarrow pistolet)
 - frequent terms? (taon \rightarrow horsefly)
 - non-ambiguous terms? ($blade \rightarrow lame$)
Features and Issues with WEAT and X-WEAT

- **WEAT**: American English, represents the culture of the (Eastern) US
- X-WEAT: Multilingual, but represents the culture of the (Eastern) US!
 —and this applies to all NLP using translation—
 - duplicates? (gun, pistol \rightarrow pistolet)
 - frequent terms? (taon \rightarrow horsefly)
 - non-ambiguous terms? ($blade \rightarrow lame$)
- **CA-WEAT**: Multilingual and culturaly aware

Features and Issues with WEAT and X-WEAT (the safe version :-))

- **WEAT**: American English, represents the culture of the (Eastern) US
- X-WEAT: Multilingual, but represents the culture of the (Eastern) US!
 —and this applies to all NLP using translation—
 - duplicates? (violin, fiddle \rightarrow violín)
 - frequent terms? $(gnat \rightarrow jej\acute{e}n)$
 - non-ambiguous terms? ($blade \rightarrow hoja$)
- **CA-WEAT**: Multilingual and culturaly aware

CA-WEAT

CA-WEATs per Country (not the best Distribution!)

CA-WEATs per Country (not the best Distribution!)

CA-WEATs

115 lists means 115 people. THANKS!!

https://github.com/cristinae/CA-WEAT

Outline

1 What is a Bias and how do we Measure them

- IAT: Implicit Association Tests
- WEAT: Association Tests in Word Embeddings
- 2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)

3 Experiments

- Wide Overview
- WEAT vs X-WEAT vs CA-WEAT
- Data Asymmetries and Isomorphism

4 Conclusions

Embedding Models & Languages

Pre-trained fastText word embeddings

WP WPali CCWP

Embedding Models & Languages

Pre-trained fastText word embeddings

WP WPali CCWP

Comparable word embeddings with a subset of CC-100

CCe CCeVMuns CCeVMsup CCe2langs CCe9langs

Embedding Models & Languages

Pre-trained fastText word embeddings

WP WPali CCWP

Comparable word embeddings with a subset of CC-100

CCe CCeVMuns CCeVMsup CCe2langs CCe9langs

Word embeddings extracted from contextual models at different layers BERT mBERT XLM XGLM

Embedding Models & Languages

Pre-trained fastText word embeddings

WP WPali CCWP

Comparable word embeddings with a subset of CC-100

CCe CCeVMuns CCeVMsup CCe2langs CCe9langs

$\boldsymbol{\boldsymbol{\gg}}$ Word embeddings extracted from contextual models at different layers

BERT mBERT XLM XGLM

A Languages

Arabic (ar), Catalan (ca), Croatian (hr), English (en), German (de), Italian (it), Russian (ru), Spanish (es) and Turkish (tr)

What we Report here (More in the Paper!)

• Size effect

$$d(\overrightarrow{\bullet}, \overrightarrow{*}, \overrightarrow{\bullet}, \overrightarrow{\bullet}) = \frac{\mu\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet}}\right) - \mu\left(\Delta_{assoc}(*, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall * \in \overrightarrow{*}}\right)}{\sigma\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet}}\right)}$$

Sawilowsky's scale: very small (d<0.01), small (<0.20), medium (<0.50), large (<0.80), very large (<1.20), and huge (<2.00)

What we Report here (More in the Paper!)

• Size effect

$$d(\overrightarrow{\bullet}, \overrightarrow{*}, \overrightarrow{\bullet}, \overrightarrow{\bullet}) = \frac{\mu\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet}}\right) - \mu\left(\Delta_{assoc}(*, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall * \in \overrightarrow{*}}\right)}{\sigma\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet} \cup \overrightarrow{*}}\right)}$$

Sawilowsky's scale: very small (d<0.01), small (<0.20), medium (<0.50), large (<0.80), very large (<1.20), and huge (<2.00)

- CA-WEAT: median and 95% CI with order statistics
- WEAT, CA-WEAT, X-WEAT: 5,000 bootstraps (median and 95% CI)

What we Report here (More in the Paper!)

• Size effect

$$d(\overrightarrow{\bullet}, \overrightarrow{*}, \overrightarrow{\bullet}, \overrightarrow{\bullet}) = \frac{\mu\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet}}\right) - \mu\left(\Delta_{assoc}(*, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall * \in \overrightarrow{*}}\right)}{\sigma\left(\Delta_{assoc}(\bullet, \overrightarrow{\bullet}, \overrightarrow{\bullet})_{\forall \bullet \in \overrightarrow{\bullet} \cup \overrightarrow{*}}\right)}$$

Sawilowsky's scale: very small (d<0.01), small (<0.20), medium (<0.50), large (<0.80), very large (<1.20), and huge (<2.00)

- CA-WEAT: median and 95% CI with order statistics
- WEAT, CA-WEAT, X-WEAT: 5,000 bootstraps (median and 95% CI)

■ IAT1 (● **); IAT2 (✓ *>) is equivalent

Do our embeddings show (human) biases? All embedding models? All languages?

Wide Overview (WEAT, CA-WEAT)

Wide Overview (WEAT, CA-WEAT)

Word embeddings:

• All WE models have d > 0

Wide Overview (WEAT, CA-WEAT)

- All WE models have d > 0
- Pre-trained models have higher σ across languages

Wide Overview (WEAT, CA-WEAT)

- All WE models have d > 0
- Pre-trained models have higher σ across languages
- Equivalent projection methods

Wide Overview (WEAT, CA-WEAT)

- All WE models have d > 0
- Pre-trained models have higher σ across languages
- Equivalent projection methods
- Multilinguality attenuates

Wide Overview (WEAT, CA-WEAT)

- All WE models have d > 0
- Pre-trained models have higher σ across languages
- Equivalent projection methods
- Multilinguality attenuates
- No universal *d*

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

■ *d* compatible with no bias

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

- d compatible with no bias
- Effect of contextualisation

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

- *d* compatible with no bias
- Effect of *contextualisation*
- But multilinguality attenuates further

Wide Overview (WEAT, CA-WEAT)

Contextual embeddings:

- d compatible with no bias
- Effect of *contextualisation*
- But multilinguality attenuates further
- No universal *d*

- X-WEAT shows similar trends as CA-WEAT
- But! With a higher dispersion across languages

- X-WEAT shows similar trends as CA-WEAT
- But! With a higher dispersion across languages
- No universal *d*

Wide Overview (CA-WEAT vs X-WEAT)

Let's focus!

WEAT vs X-WEAT vs CA-WEAT

Lists show a high dispersion (bootstrapped and averaged)

 X-WEAT lies within CA-WEAT (close cultures?)

WEAT vs X-WEAT vs CA-WEAT

- Lists show a high dispersion (bootstrapped and averaged)
- X-WEAT lies within CA-WEAT (close cultures?)
- Distributions non-normal (yet!)

WEAT vs X-WEAT vs CA-WEAT

- Lists show a high dispersion (bootstrapped and averaged)
- X-WEAT lies within CA-WEAT (close cultures?)
- Distributions non-normal (yet!)
- English interesting for further study (and Spanish, and French... :-))

Why is *d* non-universal?

Is it data differences? Is it forcing multiliguality? Is it the dispersion?

Asymmetries in Concepts Frequencies (CCe)

$\mathsf{WEAT1}{+}\mathsf{X}{-}\mathsf{WEAT1}{+}\mathsf{CA}{-}\mathsf{WEAT1}{:} \text{ no relation}$

Asymmetries in Concepts Frequencies (CCe)

X-WEAT1: Simpson's paradox?

Isomorphism

Isomorphism

- Measures: Gromov-Hausdorff distance and Eigenvector similarity
- Isomorphism between a language (sub-)space and the English (sub-)space
- For contextual models we consider the vocab from CCe

Isomorphism between a Language (sub-)Space and the English (sub-)Space

	ar		са		de		es		hr		it		ru		tr	
	EV	GH	EV	GH	EV	GH	EV	GH	EV	GH	EV	GH	EV	GH	EV	GH
WP	106	0.47	12	0.49	12	0.31	10	0.18	42	0.54	21	0.24	16	0.43	49	0.39
WPali	143	0.55	22	0.51	22	0.36	16	0.37	46	0.61	19	0.34	30	0.32	36	0.44
CCWP	15	0.40	85	0.42	42	0.92	23	0.41	51	0.65	41	0.37	32	0.64	28	0.55
CCe	55	0.62	253	0.23	26	0.79	166	0.54	91	0.61	223	0.25	8	0.56	25	0.43
CCeVMuns	229	1.56	229	1.27	27	0.82	167	1.95	69	0.93	220	1.19	27	0.96	36	0.84
CCeVMsup	36	0.56	231	0.86	32	0.70	87	0.73	27	0.61	123	0.65	25	0.80	11	0.41
CCe2langs	93	0.53	8	0.43	19	0.94	72	0.35	33	0.81	51	0.41	39	0.51	64	0.61
CCe9langs	475	1.46	23	0.84	171	1.27	21	0.61	53	1.22	51	0.41	403	1.50	149	1.15
$\begin{array}{c} mBERT_0\\XLM-R_0\\XGLM_0 \end{array}$	154	0.85	133	0.33	95	0.56	99	0.56	270	0.44	131	0.17	161	0.54	589	0.51
	54	0.38	74	0.45	59	0.43	150	0.44	58	0.54	113	0.56	111	0.32	277	0.33
	67	0.95	88	1.21	144	1.18	135	2.24	*2584	*2.30	130	1.33	85	1.64	475	0.68

- No clear distinction between WE and CE wrt. isomorphism distances
- Language and embedding model effects are also mixed

Isomorphism between a Language (sub-)Space and the English (sub-)Space

 correlation(GH, d)=-0.29; describes a 10% of the variance

Outline

1 What is a Bias and how do we Measure them

- IAT: Implicit Association Tests
- WEAT: Association Tests in Word Embeddings

2 Multilinguality and Cultural-Aware WEAT (CA-WEAT)

3 Experiments

- Wide Overview
- WEAT vs X-WEAT vs CA-WEAT
- Data Asymmetries and Isomorphism

4 Conclusions

Wrapping up

- Using (literal) translation in NLP does not in general preserve culture
- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages

Wrapping up

- Using (literal) translation in NLP does not in general preserve culture
- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages
- Monolingual and bilingual WE reproduce non-social human biases
- We do not observe a universal value even in the comparable setting
- Contextualisation and multiliguality attenuate biases, why?

Wrapping up

- Using (literal) translation in NLP does not in general preserve culture
- We therefore create CA-WEAT (in contrast to X-WEAT) to analyse desirable biases in embeddings across languages
- Monolingual and bilingual WE reproduce non-social human biases
- We do not observe a universal value even in the comparable setting
- Contextualisation and multiliguality attenuate biases, why?
- Due to the large variablility (models & languages) we want...

Future Work

- Better understanding of individual vs cultural differences
- Better understanding of intralanguage cultural differences
- Better understanding of language models

Future Work

- Better understanding of individual vs cultural differences
- Better understanding of intralanguage cultural differences
- Better understanding of language models

...time for a short digression?

A Reviewer's Comment

There is a huge variability.

Shouldn't one use more (WEAT) tests?

 \bigcirc

How do we find more tests?!

We want universality...

The Perception of Odor Pleasantness is Shared Across Cultures

[Arshamian et al., Current Biology, 2022]

- Culture plays a minimal role in the perception of odor pleasantness
- Individuals within cultures vary as to which odors they find pleasant
- Human olfactory perception is strongly constrained by universal principles

The Perception of Odor Pleasantness is Shared Across Cultures

Back into the Future Work!

- Better understanding of individual vs cultural differences
- Better understanding of intralanguage cultural differences

.

Better understanding of language models

Future Work

Better understanding of individual vs cultural differences

Better understanding of intralanguage cultural differences

Better understanding of language models

CA-WEAT.v1 103 lists, 26 languages, 29 countries

...so, still collecting CA-WEATs!

https://github.com/cristinae/CA-WEAT

That's All Folks!

Thanks! And ...

Datasets Related to Multilinguality and Cultural Diversity

ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture (Mohamed et al., EMNLP 2022)

Examples from ArtELingo

Datasets Related to Multilinguality and Cultural Diversity

Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset (Thapliyal et al., EMNLP 2022)

Source: Porsche Museum, Stuttgart by Brian Solis.

English	 A vintage sports car in a showroom with many other vintage sports cars The branded classic cars in a row at display
Spanish	 Automóvil elásico deportivo en exhibición de automóviles de galería (<i>Classic sports car in gallery car display</i>) Coche pequeño de carreras color plateado con el número 42 en una exhibición de coches (<i>Small silver racing car with the number 42 at a car show</i>)
Thai	 รถเปิดประพุนหลายสีจอดเรียงกัน ใหที่จัดแสดง (Multicolored convertibles line up in the exhibit) รถแข่งวินเทจจอดเรียงกันหลายคันในงานจัดแสดง (Several vintage racing cars line up at the show)

That's All Folks!

Datasets Related to Multilinguality and Cultural Diversity

Source: Peru - Machu Picchu 139 by McKay Savage

Source: Taal Lake Yacht Club by Simon Schoeters

Source: Shanghai Wangjia [...] by Stefan Krasowski

Figure 2: A sample of images in the XM3600 dataset, together with the language for which they have been selected. Overall, the images span regions over 36 different languages and 6 different continents.

That's All Folks!

Datasets Related to Multilinguality and Cultural Diversity

Stanceosaurus: Classifying Stance Towards Multicultural Misinformation (Zheng et al., EMNLP 2022)

Figure 1: Example Hindi and English tweets in Stanceosaurus with stance towards the claim "*Raid at Tirupati temple priest's house, 128 kg gold found*".